
.SE'CURIiY CLASSIFICATION OF THIS PAGE

lR APAIR UMENTATION PAGE
la REPORT UR4f4 Tr 0 RESTRICTIVE MARKINGS ~ ~

ISTRiBUTIONi AVAILABILITY OF'REPORT

4A LEA 1,orovea f or public release;A LJ~~.JI 19distribution unimited.
R(S) -5 1V.IONITORING ORGANIZATION REPORT NUMBER(S)

___ ___ __ ___ _ ___ __ AFOR-Th_6 9-U_6 0 Il

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Carnegie Mellon University 1 (if applicable)
___________________j_______ iip 1AIMr

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State P-Code)

Pittsburgh, PA 15213 1cf4/

Ba. NAME OF FUNDING/ SPONSORING 1 b. OFFICE SYMBOL 9.POUEET NTU )TIENTIFICATION NUMBER x
ORGANIZATION Air Force Office (if applicable)

of Scientific Research ~A/sF 2  7o3
8c. ADDRESS (City, State, and ZIP Code) 'c .CY 16 10 SOURCE OF FUNDING NUMBERS

Bolling-AiAir Force Base, DC 2O32-6448 PROGRAM PROJECT TASK WRK UIT :~.'
ELEMENT NO. NO. NO. ACCESSIC' NO.

11 TTL (ncud Scuit Casifcaio) Radon Transform Analysis of a Probabilistic Method for
Image Generation

12. PESOA 4.HOS

REOT13b. TIME COVERED /1.DATE OF REPORT ( Year, Month, Day) 15. PA E COUNI.
9na a~E~RPR FROM_4/1/88 To 3/31 ,81989 April 12 18 N.

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TTS (Continue on reverse if necessary and identify by block number)
FIELDI1 GROUP SUB-GROUP S enco~ ing, Image compression, Image processing,

?akvchain ,Q )c::
19. ABSTRt (Continue on reverse if necessar and identify by block number)

The research performed f'or this grant over the past year involved affine iterated
function system (IFS) encoding and IFS mixing for digital images. This relates to a
technique of Michael Barnsley's for generating fractal and other images by randomly
iterating affine transformations of the plane into itself. By this technique an image
is both generated and represented as the long-term probability distribution for a 2-D or -

3-D Markov chain. The encoding involves f inding an af fine "collage" of the image, whereby
it is identified as a convex combination of affinely scaled versions of itself. This
permits some remarkable data compression. The mixing involves a merging of IFS's so as to
produce images with combined textures. It ties in with the encoding in that a broader
class of images can then be efficiently jencoded, and there are more degrees of freedom in
the encoding search. The mathematical methods used involve stochastic optimization,
computational geometry, the Radon transform, dynamical systems and ergodic theory for Markov
chains. In addition the proposer studied the dynamics of discrete IFS, whereby orbits are

'*- ------ CONNUED -ON -REVERSE -

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY fdASSIK4ATION
OUNCLASSIFiEDAJNLIMITED 0 SAME AS RPT 0 DTIC USERS (I' /q ,;CO-

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. E LEPH INE (include Area Code) 22c. OFFICE SYMBnt

DD FOAM 1473, i4 MAR 83 APR edition may be used until exhausted l'W
All other editions are obsolete. K L U 11

89 5 15 20!f7



.truncated so as to always land in centers of pixels. Even in the strictly contractive
case, the discrete IFS is not strictly contractive, and uniqueness of stationary

distributions is lost. Nevertheless it was shown that as the pixel size goes to zero,

any sequence of stationary distributions converges weakly to the stationary measure for

the true IFS. Finally, the proposer animated IFS image generation so as to produce

video segments representing flows of images. This is to be used for animation encoding,

whereby a dynamical sequence of images is encoded as a time-dependent IFS.
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SUMMARY

The research performed for this grant over the past year involved affine iterated

function system (IFS) encoding and IFS mixing for digital images. This relates

to a technique of Michael Barnsley's for generating fractal and other images by

randomly iterating affine transformations of the plane into itself. By this tech-

nique an image is both generated and represented as the long-term probabbility

distribution for a 2-D or 3-D Markov chain. The encoding involves finding an

affine "collage" of the image, whereby it is identified as a convex combination of

affinely scaled versions of itself. This permits some remarkable data compression.

The mixing involves a merging of IFS's so as to produce images with combined

textures. It ties in with the encoding in that a broader class of images can then be

efficiently encoded, and there are more degrees of freedom in the encoding search.

The mathematical methods used involve stochastic optimization, computational

geometry, the Radon transform, dynamical systems and ergodic theory for Markov

chains. In addition the proposer studied the dynamics of discrete IFS, whereby

orbits are truncated so as to always land in centers of pixels. Even in the strictly

contractive case, the discrete IFS is not strictly contractive, and uniqueness of

stationary distributions is lost. Nevertheless it was shown that as the pixel size

goes to zero, any sequence of stationary distributions converges weakly to the

stationary measure for the true IFS. Finally, the proposer animated IFS image
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generation so as to produce video segments representing flows of images. This is

to be used for animation encoding, whereby a dynamical sequence of images is

encoded as a time-dependent IFS.

STATEMENT OF WORK

BASIC IFS MODEL: The basic IFS image generation algorithm is illus-

trated in Fig. 1. The leaf is generated as follows. Pick any point X 0 R2. There

are four affine transformations T : x '-+ Ax + b listed on the top of this Fig.,

and four probabilities pi underneath them. Choose one of these transformations

at random, according to the probabilities p-say Tk is chosen, and apply it to

X 0 , thereby obtaining X1 = TkX0. Then choose a transformation again at ran-

dom, independent of the previous choice, and apply it to X 1, thereby obtaining

X 2. Continue in this fashion, and plot the orbit {X,}. The result is the leaf

shown. By tabulating the frequencies with which the points X, fall into the vari-

ous pixels of the graphics window, one can actually plot the empirical distribution

E'=0 b ,x, using a grey scale to convert statistical frequency to grey level. The

darker portions of the leaf correspond to high probability density.

The following is a brief description of the proposer's mathematical model for

IFS theory. Let G be the semi-group of affine transformations g : x -4 ax + b

from Rm -- Rm. Let ycP(G), the collection of Borel probabilities on G. Given

vEP(Rm) define the convolution p * v as
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rt

, * V(B) = j,(g-B)p(dg)

for Borel subsets B C R'. Equivalently if gEG is distributed like y, if Xf m is

distributed like v and if g and X are independent, then p * v is the distribution

of gX. Say that vEP(Rm) is p-stationary when u * v = v. It can be shown that if

v is p-stationary then

C=UgC
gcH

where C and H are the supports of v and p, respectively. This is the Collage

Property. Examples like Fig. 1 correspond to the case where u is an atomic

measure

YQ(T}) = pi, 1 < i < .()

In this case the stationarity condition becomes

v(B) = Epjv(T 'B)
i=1

and the Collage Property is

N

c= UTC.
i=1

This is illustrated in Fig. 2. Observe how C, the grey leaf, is covered by four

black leaves-each of which is an affine copy of C.
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Let {g,,} be an i.i.d. sample from p. The Markov chain associated with u is

defined by

X,= g,+lX,, n > 0.

When p is the atomic measure given by (*) above, then this chain is precisely

the process described in the beginning of this Section. A distribution veP(R' )

is stationary for this chain if and only if it is p-stationary. The proposer showed

in [2], [4] that if p obeys a suitable contractivity condition, then there exists a

unique p-stationary vcP(Rm ) and the following Law of Large Numbers holds.

(LLN) With probability one the empirical distributions I Eno 6 X_ converge

weakly to v.

This LLN ensures that the plot of the orbit of any single trajectory {Xn} will

produce the desired image.

IFS ENCODING (work with J.-P. Vidal): There are two types of IFS im-

age encoding techniques under development today: interactive computer-aided

encoding, and automated encoding. In both instances the objective is to encode

a given target digital image so that it can be re-generated as the attractor of an

affine IFS. For the interactive encoding one sits down at a terminal and defines

various affine transformations geometrically, with the aid of a mouse, by identify-

ing images of triangles or rectangles under the transformations. Probabilities are

either assigned to them in proportion to their determinants (area factors), or else
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user-specified. Then the attractor of the IFS is generated and overlayed upon the

target image. Based on this the user can go back and modify his transformations

until the attractor fits well with the target. When this occurs the image has been

encoded, and in fact the coefficients and probabilities for the affine transforma-

tions constitute the code. For images involving roughly ten transformations in the

IFS, this interactive encoding typically takes between fifteen and sixty minutes

on a micro-Vax, depending on the accuracy desired (assuming that the user is

familiar with the Collage Property).

For automated encoding a target digital image is input, and the affine trans-

formations and probabilities for the IFS are all internally calculated. The error

between the IFS attractor and the target image is measured by the Hausdorff

distance, and the automated encoder searches over affine transformations so as to

minimize this error. This type of encoding typically takes from one to ten hours

on a micro-Vax.

Algorithms for both types of encoding were developed and coded under this

grant, and they are currently being tested and optimized. For the automated

encoding the proposer developed two algorithms--one involving extreme points

of the convex hull of the image, and one involving sequential constrained opti-

mization. The former was described in the First Annual Technical Report, and

the latter goes as follows. At stage i solve for T by
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MAXIMIZE [area (TiCNR-,) - A area2(TC - C)]

affine contractions T

where R, are the residual sets Ro = C,

A = A-1 - TC, i > 1,

and A is an adjustable adaptive parameter. Furthermore after the transformations

T1 ,. ., TN have been obtained in this way they can be refined on successive sweeps

by modifying the residuals

1A-I *- A--, U Ei

where

E, =ClT,c - U TiC
joi

is the essential part of TC; namely, those points of C covered exclusively by

TiC. This sequential approach has the nice feature that once T1 is computed the

algorithm automatically stays away from the identity map, since it only tries to

cover the residual of C.

IFS MIXING (work with M. Barnsley): During the first year of this grant

the proposer [2] developed a mixing algorithm for combining several image tex-

tures. This mixing includes both IFS condensation [1, Sec. 3.9] and recurrent IFS

[3] as special cases. The analysis of the mixing was only carried out then for the
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case of two screens (i.e. the mixing of two images). This year the analysis was

performed for the general case of N-screen mixing. It involves the asymptotics for

products of random affine maps indexed over excursions of a finite state Markov

chain from a fixed recurrent state. The mixing process is ergodic if the Lyapunov

exponent of such a random product is negative. The proposer is currently working

on encoding schemes for mixed processes, and more generally for images which

are 2-D or 3-D cross-sections of higher dimensional IFS.

DISCRETE IFS (work with M. Perrugia): Set up window coordinates so

that the centers of the pixels are at locations (--, -L) for integers i,j. Assume

that every point generated by the IFS is sequentially replaced with the center of

that pixel in which it lies. The resulting discrete Markov chain is referred to as

a discrete IFS. If the true IFS is strictly contractive the discrete IFS need not

be. Consider for example the 1-D IFS consisting of the single map T : x 2x.

Suppose M = 10 and consider the pixel (0.05, 0.15) which is centered at x = 0.1.

For this x one has Tx = 0.0667, and after rounding one is back to x = 0.1. Thus

x = 0, ±0.1 are all absorbing states for the discrete IFS here. The proposer has

shown that if the true IFS is strictly contractive then as M -+ oo any sequence

of stationary distributions for the discrete IFS converges weakly to the (unique)

stationary distribution for the true IFS. Currently he is investigating conditions

for ergodicity of the discrete IFS.
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IFS ANIMATION

Suppose one has two IFS, say {T,,pj :1 <i <N) and {T,,p' : 1 < i < N}.

Each of these IFS corresponds to an image and one can set up a continuous flow

of images from one to the other by interpolating the IFS parameters. This is

by no means the same as pixel interpolation. If v and v' are y and p'-invariant,

respectively, then pixel intcrpolation would amount to

V(t) = (I - t)v + t', 0 < t < 1.

This sort of interpolation generally results in blurred intermediate images. The

proposer's scheme amounts to letting i,(t) be the p(t)-invariant probability, where

P(t) = (I - O)P + tP', 0 < t < 1.

This always produces a clear and distinct sequence of intermediate images.

What makes IFS animation even more special is the ease with which one can

rotate, scale, change perspective or vantage point, zoom in and out, or perform any

affine transformation on an image. Suppose one wants to apply, say, a 3-D rotation

R to the image. This can be incorporated directly into the IFS. Simply replace the

original transformations T with the composite transformations RTR -1 . These

composite transformations are also affine, and by running the IFS algorithm with

them and using the same probabilities as before, the rotation is automatically

built in.
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IFS animation is a highly parallel algorithm. The images for the various times

t in the flow can all be generated in parallel, since there are no dependencies

among the images at different times. Furthermore the same sequence of random

numbers can be used for all the intermediate images. Figs. 3-5 are some snaps

from different animations.

The next step is IFS encoding for animation. Here the data compression ratios

are enormous, since the encoding of two "endpoint" images suffices to generate

the intermediates. Furthermore in certain respects animation encoding is easier

than still image encoding. This is because a dynamic sequence of images often

exposes more information about the individual still images, such as segmentation

information. Velocity tracking of boundaries and key features of an image can be

used to decide where to position the temporal IFS linear interpolation points (i.e.

to break the animation up into "piecewise linear" video segments), and how to

identify the images as IFS mixtures. Animation is potentially the most exciting

application of IFS encoding.
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INTERACTIONS: The proposer gave the following presentations:

(1) AFOSR at Bolling Air Force Base on Feb. 24, 1988 (host: Dr. A. Nachman);

(2) NIST in Gaithersburg, MD on March 29, 1989 (host: Dr. F. Sullivan);

(3) NSF in Washington, DC on March 30, 1989 (host: Dr. R. Chin);

(4) Invited talk in Michael Barnsley's minisymposium on chaos at the annual

SIAM meeting in Minneapolis, July 10-15, 1988 (host: Dr. M. Barnsley);

(5) Sixth International Conf. on Math. Modelling, held at Washington Univ.

in Aug., 1987;

(6) Invited talk for the seminar run by the image processing group (Grenander,

McClure, Geman, and Gidas) in the Division of Applied Mathematics at

Brown University on Feb. 15, 1989 (host: Dr. B. Gidas);

(7) Invited talk for the seminar run by the Pittsburgh Supercomputing Center

in October, 1987 (host: Dr. R. Roskies);

(8) Special 3-day lecture series at Allegheny College, April 10-12, 1989.

PARTICIPATING PROFESSIONALS: The proposer's research on image

encoding is being carried out with

(1) Jean-Philippe Vidal (Ph.D. student, Comp. Sci., CMU-funded by AFOSR);
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(2) Bill Eddy (Prof. of Statistics, CMU);

(3) Mario Perrugia (Ph.D. student, Statistics, CMU);

(4) Michael Barnsley, John Elton, Jeff Geronimo, and Ron Shonkwiler (Prof.'s

of Math., GA Tech.).

The proposer's research on mixing is being carried out with

(1) H. Met6 Soner (Prof. of Math., CMU);

(2) Michael Barnsley and John Elton (Prof.'s of Math., GA Tech.).

Computing support has been provided by the Pittsburgh Supercomputing Center

(Cray Y-MP/832 and animation equipment), the Statistics Dept. at CMU (micro-

Vax and animation/camera equipment) and the Computer Graphics Lab in the

School of Mathematics at GA Tech. (Masscomp 5600 series and Encore). An

article about the proposer's work on IFS image processing (written by science

editor Michael Schneider) will appear in the forthcoming Projects in Scientific

Computing for the Pittsburgh Supercomputing Center this June.
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Figure 1: Maple Leaf
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Figure 2: Collage of the Maple Leaf
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